

The Euclid Mission

Jason Rhodes (JPL)

Euclid Consortium

•Merger of DUNE (French led WL) and Space (Italian led BAO)

- Dune was Vis/NIR imaging
- •Space was NIR spectroscopy
- •Recently NIR instruments were merged into NISP

•Consortium Lead Alexandre Refregier (France)

•200+ Consortium members (very inclusive)

•Current European member countries: Austria, France, Germany, Italy, Netherlands, Norway, Spain, Switzerland, UK

Outstanding Questions in cosmology

→ Euclid's Primary Science Objectives
 Nature of the Dark Energy
 Nature of the Dark Matter
 Initial conditions (Inflation Physics)
 Modifications to Gravity

→ Secondary Science Objectives Legacy science (NIR) Microlensing/planet finding enabled

Euclid concept

- High-precision survey mission to map the geometry of the Dark Universe
- Optimized for two complementary cosmological probes
 - Weak Gravitational Lensing
 - Baryonic Acoustic Oscillations
 - Additional probes enabled with same data: clusters, redshift space distortions, ISW
- Full extragalactic sky survey with 1.2m telescope at L2:
 - Imaging:
 - High precision imaging at visible wavelengths
 - Photometry/Imaging in the near-infrared
 - Near Infrared Spectroscopy
- Ground/Space synergy to minimize costs and maximize science
- Legacy science for a wide range of areas in astronomy
- Yellow Book for more information http://xxx.lanl.gov/abs/0912.0914

Weak Gravitational Lensing

Euclid

Weak Lensing:

- Map the 3D distribution of Dark Matter in the Universe
- Measures the mass without assumptions in relation between mass and light
- Very sensitive to Dark Energy through both geometry and growth
- \rightarrow Need measurements of galaxy shape and photometric redshifts

Requirements for Weak Lensing

Euclid

Statistics: optimal survey geometry: wide rather than deep for a fixed survey time, \rightarrow need 20,000 deg² to reach ~1% precision on w

Redshift bins: good photo-z for redshift binning and intrinsic alignments \rightarrow need deep NIR photometry

Systematics: must gain 2 orders of magnitude in systematic residual variance \rightarrow need about 50 bright stars to calibrate PSF

Baryonic Acoustic Oscillations

Galaxy Clustering Survey

- Need large volumes ($V_{eff} \approx 19 \text{ h}^{-3} \text{ Gpc}^3 \approx 75 \text{x}$ larger than SDSS)
- Need to probe redshifts 0<z<2
- Use galaxy spectroscopic survey to measure: BAO, full galaxy power spectrum P(k) and redshift space distortions to constrain Dark Energy and Modified Gravity

Euclid Mission Baseline

Mission elements:

- L2 Orbit
- 4 -5 year mission (still being optimized)
- Telescope: three mirror astigmat (TMA) with 1.2
 m primary
- Instruments:
- VIS: Visible imaging channel: 0.5 deg², 0.10" pixels, 0.18" PSF FWHM, broad band R+I+Z (0.55-0.92mu), 36 CCD detectors, galaxy shapes
- NISP: NIR channel: 0.5 deg^{2,} 16 HgCdTe detectors, 1-2µm (2.5 µm cutoff devices)
 - Photometry: 0.3" pixels, 3 bands Y,J,H, photo-z's
 - Spectroscopy: R=500, slitless, redshifts

Euclid Focal Planes

Vis exposure time leaves margin (possibly for second filter)

Euclid Surveys

Euclid

Wide Survey: 20,000 deg²

- Visible: Galaxy shape measurements for 2x10⁹ galaxies to *RIZ*_{AB} ≤ 24.5 (AB, 10σ) at 0.16" FWHM, yielding 30-40 resolved galaxies/amin², with a median redshift *z*~ 0.9
- NIR photometry: Y, J, H \leq 24 (AB, 5 σ PS), yielding photo-z's errors of 0.03-0.05(1+z) with ground based complement (PanStarrs-2, DES, LSST, etc)
- Spectroscopy: redshifts for 40x10⁶ galaxies with emission line fluxes >4.10⁻¹⁶ ergs/cm²/s at 0<z<2 (slitless)

Deep Survey: 40 deg² deg² at ecliptic poles

- Monitoring of PSF drift (40 repeats at different orientations over life of mission)
- Produces +2 magnitude in depth for both visible and NIR imaging

Possible additional Galactic surveys (enabled beyond 4 years):

- Short exposure Galactic plane
- High cadence microlensing extra-solar planet surveys

•Only do from space what must be done from space due to backgrounds or systematics

•To achieve photometric redshift precision, combine Euclid visible/NIR photometry with visible photometry from the ground

•DES+Pan-STARRS2 will meet requirements for depth and sky coverage. LSST+PS4 will provide even better photo-z's

•Collaborations engaged with DES and PS projects

Impact on Cosmology

Euclid

	Dark Energy		Densities			Initial Conditions		Hubble	DE
	Δw_p	Δw_a	$\Delta \Omega_{\rm m}$	$\Delta\Omega_{\Lambda}$	$\Delta \Omega_{ m b}$	$\Delta \sigma_8$	Δn_s	Δh	FoM ²
Current +WMAP ³	0.13	-	0.01	0.015	0.0015	0.026	0.013	0.013	~10
Planck	-	-	0.008	-	0.0007	0.05	0.005	0.007	-
Euclid Req.	0.018	0.15	0.004	0.012	0.006	0.004	0.007	0.022	400
Euclid Goal	0.016	0.13	0.003	0.012	0.005	0.003	0.006	0.020	500
Euclid +Planck	0.010	0.066	0.0008	0.003	0.0004	0.0015	0.003	0.002	1500
Factor gain on Current	13	> 15	13	5	4	17	4	7	150

Euclid will challenge all sectors of the cosmological model:

Dark Energy: w_p and w_a with an error of 2% and 13% respectively (no prior)

Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)

Initial Conditions: constrain shape of primordial power spectrum, primordial non-gaussianity

Gravity: test GR by reaching a precision of 2% on the growth exponent γ ($d \ln \delta_m / d \ln a \propto \Omega_m^{\gamma}$)

 \rightarrow Uncover new physics and map LSS at 0<z<2: Low redshift counterpart to CMB surveys like Planck

Legacy Science

- Unique legacy survey: 2 billion galaxies imaged in optical/NIR to mag 24, 40 Million NIR galaxy spectra, full extragalactic sky coverage, Galactic sources
- Unique datase for various fields in astronomy: galaxy evolution, search for high-z objects, clusters, strong lensing, brown dwarfs, exo-planets, etc
- Synergies with other facilities: JWST, Planck, GAIA, DES, Pan-STARSS, LSST, etc
- All data publicly available through a legacy archive

Search for Exo-Planets

Enabled in a possible extended mission

Microlensing survey: 4 deg² in the bulge, visited every 20 minutes over 3 months (Y,J,H~22 per visit), monitor 2x10⁸ stars

 \rightarrow Detect ~30 Jupiters, and ~5 Earth Mass planets in the habitable

Conclusions

- Euclid is a high-precision wide-field survey mission to map the geometry of the Dark Universe
- Euclid will provide unprecedented accuracy on all sectors of the cosmological model: Dark Energy, Dark Matter, Initial Conditions, Gravity
- Euclid will also provide unique legacy science from its all sky legacy archive and additional surveys
- Complementary and analogous to CMB measurement of Large-Scale Structure at matter-radiation transition epoch: Euclid will provide high-precision map of LSS at matter-DE transition epoch: 3D, nongaussian, multi-probe

Current status of Dark Energy

Dark Energy:

- Affects cosmic geometry and structure growth
- Parameterized by equation of state parameter: $w(z)=\rho/p$, constant w=-1 for cosmological constant

Current constraints: 10% error on constant w

For definite answers on DE: need to reach a precision of 1% on (varying) w and 10% on w_a =dw/da

 \rightarrow Objective for Euclid

Advantages of Space

Space observations provide:

• small and stable PSF: larger number density of resolved galaxies, small systematics for Weak Lensing

deep NIR photometry: better photometric redshifts

• NIR spectroscopy: galaxy redshifts at z>1

